Search results
Results from the WOW.Com Content Network
Hermann Hankel (14 February 1839 – 29 August 1873) was a German mathematician. Having worked on mathematical analysis during his career, he is best known for introducing the Hankel transform and the Hankel matrix .
In control theory, Hankel singular values, named after Hermann Hankel, provide a measure of energy for each state in a system. They are the basis for balanced model reduction, in which high energy states are retained while low energy states are discarded. The reduced model retains the important features of the original model.
Hankel matrices are formed when, given a sequence of output data, a realization of an underlying state-space or hidden Markov model is desired. [3] The singular value decomposition of the Hankel matrix provides a means of computing the A , B , and C matrices which define the state-space realization. [ 4 ]
It was first published by Hermann Hankel in 1861. [9] [10] This classical case relates the surface integral of the curl of a vector field over a surface (that is, the flux of ) in Euclidean three-space to the line integral of the vector field over the surface boundary.
One of the first mathematicians to appreciate Grassmann's ideas during his lifetime was Hermann Hankel, whose 1867 Theorie der complexen Zahlensysteme. [5] […], he developed […] some of Hermann Grassmann's algebras and W.R. Hamilton's quaternions. Hankel was the first to recognise the significance of Grassmann's long-neglected writings and ...
The Hankel transform appears when one writes the multidimensional Fourier transform in hyperspherical coordinates, which is the reason why the Hankel transform often appears in physical problems with cylindrical or spherical symmetry. Consider a function () of a -dimensional vector r.
The first phase of the rapid-fire effort by Tesla CEO Elon Musk and President Donald Trump to cut waste from government agencies appears driven more by an ideological assault on federal agencies ...
In mathematics, an Erdélyi–Kober operator is a fractional integration operation introduced by Arthur Erdélyi and Hermann Kober . The Erdélyi–Kober fractional integral is given by x − ν − α + 1 Γ ( α ) ∫ 0 x ( t − x ) α − 1 t − α − ν f ( t ) d t {\displaystyle {\frac {x^{-\nu -\alpha +1}}{\Gamma (\alpha )}}\int _{0 ...