enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points, that is the points where the slope of the function is zero. [2]

  3. List of curves - Wikipedia

    en.wikipedia.org/wiki/List_of_curves

    Aggregate demand curve; Compensated demand curve; Duck curve; Engel curve; Hubbert curve; Indifference curve; J curve; Kuznets curve; Laffer curve; Lorenz curve; Phillips curve; Supply curve. Aggregate supply curve; Backward bending supply curve of labor

  4. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The other roots of the equation are obtained either by changing of cube root or, equivalently, by multiplying the cube root by a primitive cube root of unity, that is . This formula for the roots is always correct except when p = q = 0 , with the proviso that if p = 0 , the square root is chosen so that C ≠ 0 .

  5. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where ⁠ ⁠ is its variable, and ⁠ ⁠, ⁠ ⁠, and ⁠ ⁠ are coefficients.The expression ⁠ + + ⁠, especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.

  6. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    His solution gives only one root, even when both roots are positive. [28] The Indian mathematician Brahmagupta included a generic method for finding one root of a quadratic equation in his treatise Brāhmasphuṭasiddhānta (circa 628 AD), written out in words in the style of the time but more or less equivalent to the modern symbolic formula.

  7. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. In differential calculus and differential geometry , an inflection point , point of inflection , flex , or inflection (rarely inflexion ) is a point on ...

  8. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    A quadratic equation always has two roots, if complex roots are included and a double root is counted for two. A quadratic equation can be factored into an equivalent equation [ 3 ] a x 2 + b x + c = a ( x − r ) ( x − s ) = 0 {\displaystyle ax^{2}+bx+c=a(x-r)(x-s)=0} where r and s are the solutions for x .

  9. Elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve

    Elliptic curves can be defined over any field K; the formal definition of an elliptic curve is a non-singular projective algebraic curve over K with genus 1 and endowed with a distinguished point defined over K. If the characteristic of K is neither 2 nor 3, then every elliptic curve over K can be written in the form