Search results
Results from the WOW.Com Content Network
The K-factor is the bending capacity of sheet metal, and by extension the forumulae used to calculate this. [1] [2] [3] Mathematically it is an engineering aspect of geometry. [4] Such is its intricacy in precision sheet metal bending [5] (with press brakes in particular) that its proper application in engineering has been termed an art. [4] [5]
The Lankford coefficient (also called Lankford value, R-value, or plastic strain ratio) [1] is a measure of the plastic anisotropy of a rolled sheet metal. This scalar quantity is used extensively as an indicator of the formability of recrystallized low-carbon steel sheets.
Instead the formula that would fit some of the Bonales data is k ≈ 2.0526 - 0.0176TC and not k = -0.0176 + 2.0526T as they say on page S615 and also the values they posted for Alexiades and Solomon do not fit the other formula that they posted on table 1 on page S611 and the formula that would fit over there is k = 2.18 - 0.01365TC and not k ...
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
K-factor (Elo rating system), a constant used in Elo rating system; K-factor (marketing), the growth rate of websites, apps, or a customer base; K-factor (sheet metal), the ratio of location of the neutral line to the material thickness; The K Factor, a fictional TV show within Harry Hill's TV Burp; Bondi k-factor, the "k" in Bondi k-calculus
Since metals can display multiple oxidation numbers, the exact definition of how many "valence electrons" an element should have in elemental form is somewhat arbitrary, but the following table lists the free electron densities given in Ashcroft and Mermin, which were calculated using the formula above based on reasonable assumptions about ...
A forming limit diagram, also known as a forming limit curve, is used in sheet metal forming for predicting forming behavior of sheet metal. [1] [2] The diagram attempts to provide a graphical description of material failure tests, such as a punched dome test. In order to determine whether a given region has failed, a mechanical test is performed.
Most metals have an -value between 0.10 and 0.50. In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [ 1 ] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.