Search results
Results from the WOW.Com Content Network
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument , either circular angle or hyperbolic angle . Since the area of a circular sector with radius r and angle u (in radians) is r 2 u /2 , it will be equal to u when r = √ 2 .
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
Print/export Download as PDF; Printable version; ... Pages in category "Hyperbolic functions" The following 25 pages are in this category, out of 25 total.
In spherical trigonometry, triangles on the surface of a sphere are studied. The spherical triangle identities are written in terms of the ordinary trigonometric functions but differ from the plane triangle identities. Hyperbolic trigonometry: Study of hyperbolic triangles in hyperbolic geometry with hyperbolic functions.
In mathematics, hyperbolic trigonometry can mean: The study of hyperbolic triangles in hyperbolic geometry (traditional trigonometry is the study of triangles in plane geometry) The use of the hyperbolic functions; The use of gyrotrigonometry in hyperbolic geometry
This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...