Search results
Results from the WOW.Com Content Network
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
An Adler-32 checksum is obtained by calculating two 16-bit checksums A and B and concatenating their bits into a 32-bit integer. A is the sum of all bytes in the stream plus one, and B is the sum of the individual values of A from each step. At the beginning of an Adler-32 run, A is initialized to 1, B to 0.
Crypto++ ordinarily provides complete cryptographic implementations and often includes less popular, less frequently-used schemes. For example, Camellia is an ISO/NESSIE/IETF-approved block cipher roughly equivalent to AES, and Whirlpool is an ISO/NESSIE/IETF-approved hash function roughly equivalent to SHA; both are included in the library.
MurmurHash is a non-cryptographic hash function suitable for general hash-based lookup. [1] [2] [3] It was created by Austin Appleby in 2008 [4] and, as of 8 January 2016, [5] is hosted on GitHub along with its test suite named SMHasher.
The meaning of "small enough" depends on the size of the type that is used as the hashed value. For example, in Java, the hash code is a 32-bit integer. Thus the 32-bit integer Integer and 32-bit floating-point Float objects can simply use the value directly, whereas the 64-bit integer Long and 64-bit floating-point Double cannot.
The lookup3 function consumes input in 12 byte (96 bit) chunks. [9] It may be appropriate when speed is more important than simplicity. Note, though, that any speed improvement from the use of this hash is only likely to be useful for large keys, and that the increased complexity may also have speed consequences such as preventing an optimizing compiler from inlining the hash function.
crypt is a POSIX C library function. It is typically used to compute the hash of user account passwords. The function outputs a text string which also encodes the salt (usually the first two characters are the salt itself and the rest is the hashed result), and identifies the hash algorithm used (defaulting to the "traditional" one explained below).
Fowler–Noll–Vo (or FNV) is a non-cryptographic hash function created by Glenn Fowler, Landon Curt Noll, and Kiem-Phong Vo.. The basis of the FNV hash algorithm was taken from an idea sent as reviewer comments to the IEEE POSIX P1003.2 committee by Glenn Fowler and Phong Vo in 1991.