Search results
Results from the WOW.Com Content Network
= milligrams of pollutant per cubic meter of air at sea level atmospheric pressure and T: ppmv = air pollutant concentration, in parts per million by volume T = ambient temperature in K = 273. + °C 0.082057338 = Universal gas constant in L atm mol −1 K −1: M = molecular mass (or molecular weight) of the air pollutant
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
These values are significant in the design of combustion systems. For example, if a turbojet combustion chamber has a maximum temperature of T 0 * = 2000 K, T 0 and M at the entrance to the combustion chamber must be selected so thermal choking does not occur, which will limit the mass flow rate of air into the engine and decrease thrust.
The stagnation enthalpy adds a term associated with the kinetic energy of the fluid mass. [2] The total enthalpy for a real or ideal gas does not change across a shock. The total enthalpy can not be measured directly. Instead, the static enthalpy and the fluid velocity can be measured. Static enthalpy is often used in the energy equation for a ...
The technical literature on air pollution dispersion is quite extensive and dates back to the 1930s and earlier. One of the early air pollutant plume dispersion equations was derived by Bosanquet and Pearson. [2] Their equation did not assume Gaussian distribution nor did it include the effect of ground reflection of the pollutant plume.
Because the energy per unit mass of liquid in a well-mixed reservoir is uniform throughout, Bernoulli's equation can be used to analyze the fluid flow everywhere in that reservoir (including pipes or flow fields that the reservoir feeds) except where viscous forces dominate and erode the energy per unit mass. [6]: Example 3.5 and p.116
Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity. The change in mass is the amount that flows after crossing the boundary for some time duration, not the initial amount of mass at the boundary minus the final amount at the boundary, since the change in mass flowing through the area ...
Whether a process can occur spontaneously depends not only on the enthalpy change but also on the entropy change (∆S) and absolute temperature T.If a process is a spontaneous process at a certain temperature, the products have a lower Gibbs free energy G = H – TS than the reactants (an exergonic process), [2] even if the enthalpy of the products is higher.