Search results
Results from the WOW.Com Content Network
Quite contrary to C++, in the functional programming language Haskell the void type denotes the empty type, which has no inhabitants . A function into the void type does not return results, and a side-effectful program with type signature IO Void does not terminate, or crashes. In particular, there are no total functions into the void type.
The void pointer, or void*, is supported in ANSI C and C++ as a generic pointer type. A pointer to void can store the address of any object (not function), [ a ] and, in C, is implicitly converted to any other object pointer type on assignment, but it must be explicitly cast if dereferenced.
Specifically, C allows a void* pointer to be assigned to any pointer type without a cast, while C++ does not; this idiom appears often in C code using malloc memory allocation, [9] or in the passing of context pointers to the POSIX pthreads API, and other frameworks involving callbacks. For example, the following is valid in C but not C++:
The second notable difference is that the void type is special and can never be stored in a record type, i.e. in a struct or a class in C/C++. In contrast, the unit type can be stored in records in functional programming languages, i.e. it can appear as the type of a field; the above implementation of the unit type in C++ can also be stored.
Function prototypes include the function signature, the name of the function, return type and access specifier. In this case the name of the function is "Sum". The function signature defines the number of parameters and their types. The return type is "void". This means that the function is not going to return any value.
A function definition starts with the name of the type of value that it returns or void to indicate that it does not return a value. This is followed by the function name, formal arguments in parentheses, and body lines in braces. In C++, a function declared in a class (as non-static) is called a member function or method.
All logical operators exist in C and C++ and can be overloaded in C++, albeit the overloading of the logical AND and logical OR is discouraged, because as overloaded operators they behave as ordinary function calls, which means that both of their operands are evaluated, so they lose their well-used and expected short-circuit evaluation property ...
In the C and C++ programming languages, an inline function is one qualified with the keyword inline; this serves two purposes: . It serves as a compiler directive that suggests (but does not require) that the compiler substitute the body of the function inline by performing inline expansion, i.e. by inserting the function code at the address of each function call, thereby saving the overhead ...