enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wheel theory - Wikipedia

    en.wikipedia.org/wiki/Wheel_theory

    A wheel is an algebraic structure (,,, +,, /), in which . is a set, and are elements of that set, + and are binary operations, / is a unary operation, and satisfying the following properties:

  3. Tarski's axioms - Wikipedia

    en.wikipedia.org/wiki/Tarski's_axioms

    The first four axioms establish some elementary properties of the two primitive relations. For instance, Reflexivity and Transitivity of Congruence establish that congruence is an equivalence relation over line segments. The Identity of Congruence and of Betweenness govern the trivial case when those relations are applied to nondistinct points.

  4. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    Indeed, every congruence arises as a kernel. For a given congruence ~ on A, the set A / ~ of equivalence classes can be given the structure of an algebra in a natural fashion, the quotient algebra. The function that maps every element of A to its equivalence class is a homomorphism, and the kernel of this homomorphism is ~.

  5. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    The SSA condition (side-side-angle) which specifies two sides and a non-included angle (also known as ASS, or angle-side-side) does not by itself prove congruence. In order to show congruence, additional information is required such as the measure of the corresponding angles and in some cases the lengths of the two pairs of corresponding sides.

  6. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Congruence of triangles is determined by specifying two sides and the angle between them (SAS), two angles and the side between them (ASA) or two angles and a corresponding adjacent side (AAS). Specifying two sides and an adjacent angle (SSA), however, can yield two distinct possible triangles unless the angle specified is a right angle.

  7. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    An axiomatic system is said to be consistent if it lacks contradiction.That is, it is impossible to derive both a statement and its negation from the system's axioms. Consistency is a key requirement for most axiomatic systems, as the presence of contradiction would allow any statement to be proven (principle of explo

  8. Ramanujan tau function - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_tau_function

    For k ∈ and n ∈ >0, the Divisor function σ k (n) is the sum of the k th powers of the divisors of n. The tau function satisfies several congruence relations; many of them can be expressed in terms of σ k (n). Here are some: [2]

  9. Isomorphism theorems - Wikipedia

    en.wikipedia.org/wiki/Isomorphism_theorems

    A congruence on an algebra is an equivalence relation that forms a subalgebra of considered as an algebra with componentwise operations. One can make the set of equivalence classes A / Φ {\displaystyle A/\Phi } into an algebra of the same type by defining the operations via representatives; this will be well-defined since Φ {\displaystyle ...