enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = ⁠ 1585 / 1000 ⁠); it may also be written as a ratio of the form ⁠ k / 2 n ·5 m ⁠ (e.g. 1.585 = ⁠ 317 / 2 3 ·5 2 ⁠).

  3. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    For example, ⁠ 1 / 4 ⁠, ⁠ 5 / 6 ⁠, and ⁠ −101 / 100 ⁠ are all irreducible fractions. On the other hand, ⁠ 2 / 4 ⁠ is reducible since it is equal in value to ⁠ 1 / 2 ⁠, and the numerator of ⁠ 1 / 2 ⁠ is less than the numerator of ⁠ 2 / 4 ⁠. A fraction that is reducible can be reduced by dividing both the numerator ...

  4. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  5. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    that can possibly arise when = + is expanded as a regular continued fraction, Lagrange showed that the largest partial denominator a i in the expansion is less than , and that the length of the repeating block is less than 2D. More recently, sharper arguments [5] [6] [7] based on the divisor function have shown that the length of the repeating ...

  6. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    The correct result would be 1.2 × 5.6 = 6.72. For a more complicated example, suppose that the two numbers 1.2 and 5.6 are represented in 32-bit fixed point format with 30 and 20 fraction bits, respectively. Scaling by 2 30 and 2 20 gives 1 288 490 188.8 and 5 872 025.6, that round to 1 288 490 189 and 5 872 026, respectively. Both numbers ...

  7. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  8. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    In this formalism, the identities 1 = 0.999... and 1 = 1.000... reflect, respectively, the fact that 1 lies in both [0, 1]. and [1, 2], so one can choose either subinterval when finding its digits. To ensure that this notation does not abuse the "=" sign, one needs a way to reconstruct a unique real number for each decimal.

  9. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    This last non-simple continued fraction (sequence A110185 in the OEIS), equivalent to = [;,,,,,...], has a quicker convergence rate compared to Euler's continued fraction formula [clarification needed] and is a special case of a general formula for the exponential function: