Search results
Results from the WOW.Com Content Network
In information theory, Shannon–Fano–Elias coding is a precursor to arithmetic coding, in which probabilities are used to determine codewords. [1] It is named for Claude Shannon , Robert Fano , and Peter Elias .
In the field of data compression, Shannon coding, named after its creator, Claude Shannon, is a lossless data compression technique for constructing a prefix code based on a set of symbols and their probabilities (estimated or measured).
In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...
For another, both Shannon’s and Fano’s coding schemes are similar in the sense that they both are efficient, but suboptimal prefix-free coding schemes with a similar performance. Shannon's (1948) method, using predefined word lengths, is called Shannon–Fano coding by Cover and Thomas, [ 4 ] Goldie and Pinch, [ 5 ] Jones and Jones, [ 6 ...
In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have an expected code length greater than or equal to the entropy of the source.
In many cases, they generally offer greater simplicity of implementation over a block code of equal power. The encoder is usually a simple circuit which has state memory and some feedback logic, normally XOR gates. The decoder can be implemented in software or firmware. The Viterbi algorithm is the optimum algorithm used to decode convolutional ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Here is the formal definition of each element (where the only difference with respect to the nonfeedback capacity is the encoder definition): W {\displaystyle W} is the message to be transmitted, taken in an alphabet W {\displaystyle {\mathcal {W}}} ;