Search results
Results from the WOW.Com Content Network
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.
In mathematics, the associative property [1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic , associativity is a valid rule of replacement for expressions in logical proofs .
Today the commutative property is a well-known and basic property used in most branches of mathematics. The first recorded use of the term commutative was in a memoir by François Servois in 1814, [ 1 ] [ 10 ] which used the word commutatives when describing functions that have what is now called the commutative property.
The typical diagram of the definition of a universal morphism. In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them.
For example, in elementary arithmetic, one has (+) = + (). Therefore, one would say that multiplication distributes over addition . This basic property of numbers is part of the definition of most algebraic structures that have two operations called addition and multiplication, such as complex numbers , polynomials , matrices , rings , and fields .
The least-upper-bound property is an example of the aforementioned completeness properties which is typical for the set of real numbers. This property is sometimes called Dedekind completeness . If an ordered set S {\displaystyle S} has the property that every nonempty subset of S {\displaystyle S} having an upper bound also has a least upper ...
In mathematics, a binary relation R on a set X is transitive if, for all elements a, b, c in X, whenever R relates a to b and b to c, then R also relates a to c. Every partial order and every equivalence relation is transitive. For example, less than and equality among real numbers are both transitive: If a < b and b < c then a < c; and if x ...
The Archimedean property appears in Book V of Euclid's Elements as Definition 4: Magnitudes are said to have a ratio to one another which can, when multiplied, exceed one another. Because Archimedes credited it to Eudoxus of Cnidus it is also known as the "Theorem of Eudoxus" or the Eudoxus axiom .