enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dilworth's theorem - Wikipedia

    en.wikipedia.org/wiki/Dilworth's_theorem

    An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest ...

  3. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    As another example, consider the positive integers, ordered by divisibility: 1 is a least element, as it divides all other elements; on the other hand this poset does not have a greatest element. This partially ordered set does not even have any maximal elements, since any g divides for instance 2 g , which is distinct from it, so g is not maximal.

  4. Antichain - Wikipedia

    en.wikipedia.org/wiki/Antichain

    An antichain in is a subset of in which each pair of different elements is incomparable; that is, there is no order relation between any two different elements in . (However, some authors use the term "antichain" to mean strong antichain , a subset such that there is no element of the poset smaller than two distinct elements of the antichain.)

  5. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if:

  6. Order dimension - Wikipedia

    en.wikipedia.org/wiki/Order_dimension

    Let n be a positive integer, and let P be the partial order on the elements a i and b i (for 1 ≤ i ≤ n) in which a i ≤ b j whenever i ≠ j, but no other pairs are comparable. In particular, a i and b i are incomparable in P; P can be viewed as an oriented form of a crown graph. The illustration shows an ordering of this type for n = 4.

  7. Maximal and minimal elements - Wikipedia

    en.wikipedia.org/wiki/Maximal_and_minimal_elements

    The red subset = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element. In mathematics , especially in order theory , a maximal element of a subset S {\displaystyle S} of some preordered set is an element of S {\displaystyle S} that is not smaller than any other element in S ...

  8. Greatest element and least element - Wikipedia

    en.wikipedia.org/wiki/Greatest_element_and_least...

    In mathematics, especially in order theory, the greatest element of a subset of a partially ordered set (poset) is an element of that is greater than every other element of . The term least element is defined dually , that is, it is an element of S {\displaystyle S} that is smaller than every other element of S . {\displaystyle S.}

  9. Comparability - Wikipedia

    en.wikipedia.org/wiki/Comparability

    Hasse diagram of the natural numbers, partially ordered by "x≤y if x divides y".The numbers 4 and 6 are incomparable, since neither divides the other. In mathematics, two elements x and y of a set P are said to be comparable with respect to a binary relation ≤ if at least one of x ≤ y or y ≤ x is true.