Search results
Results from the WOW.Com Content Network
As another example, consider the positive integers, ordered by divisibility: 1 is a least element, as it divides all other elements; on the other hand this poset does not have a greatest element. This partially ordered set does not even have any maximal elements, since any g divides for instance 2g, which is distinct from it, so g is not
In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem states that, in any finite partially ordered set, the maximum size of an antichain of incomparable elements equals the minimum number of chains needed to cover all elements. This number is called the width of the partial order.
In a partially ordered set there may be some elements that play a special role. The most basic example is given by the least element of a poset. For example, 1 is the least element of the positive integers and the empty set is the least set under the subset order. Formally, an element m is a least element if:
The least and greatest element of the whole partially ordered set play a special role and are also called bottom (⊥) and top (⊤), or zero (0) and unit (1), respectively. If both exist, the poset is called a bounded poset. The notation of 0 and 1 is used preferably when the poset is a complemented lattice, and when no confusion is likely, i ...
Hasse diagram of the natural numbers, partially ordered by "x≤y if x divides y".The numbers 4 and 6 are incomparable, since neither divides the other. In mathematics, two elements x and y of a set P are said to be comparable with respect to a binary relation ≤ if at least one of x ≤ y or y ≤ x is true.
Intuitively, a filter F is a subset of P whose members are elements large enough to satisfy some criterion. [1] For instance, if x ∈ P, then the set of elements above x is a filter, called the principal filter at x. (If x and y are incomparable elements of P, then neither the principal filter at x nor y is contained in the other.)
For two elements a, b of a partially ordered set P, the interval [a,b] is the subset {x in P | a ≤ x ≤ b} of P. If a ≤ b does not hold the interval will be empty. Interval finite poset. A partially ordered set P is interval finite if every interval of the form {x in P | x ≤ a} is a finite set. [2] Inverse. See converse. Irreflexive.
The first diagram makes clear that the power set is a graded poset.The second diagram has the same graded structure, but by making some edges longer than others, it emphasizes that the 4-dimensional cube is a combinatorial union of two 3-dimensional cubes, and that a tetrahedron (abstract 3-polytope) likewise merges two triangles (abstract 2-polytopes).