Search results
Results from the WOW.Com Content Network
At 15.6 °C (60.1 °F), the density of a saturated solution is 0.88 g/ml; it contains 35.6% ammonia by mass, 308 grams of ammonia per litre of solution, and has a molarity of approximately 18 mol/L. At higher temperatures, the molarity of the saturated solution decreases and the density increases. [ 8 ]
The miner's inch is a method of measuring the amount of flow a particular water supply system (such as a flume or sluice) is capable of supplying. The miner’s inch measures the amount of water that would flow through a slot of a given area at a given pressure (for example, at a head of 6 inches of water, or 1.5 kPa.) In miner's inch the word ...
In most contexts a mention of rate of fluid flow is likely to refer to the volumetric rate. In hydrometry, the volumetric flow rate is known as discharge. Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration ...
A hydrograph is a graph showing the rate of flow versus time past a specific point in a river, channel, or conduit carrying flow. The rate of flow is typically expressed in units of cubic meters per second (m³/s) or cubic feet per second (cfs). Hydrographs often relate changes of precipitation to changes in discharge over time. [1] The term ...
The flow hydrant is fitted with a diffuser device containing a pitot tube that measures stagnation pressure in the middle of the stream while the hydrant is flowing. First, a static pressure gauge is attached to the test hydrant and the static water pressure is measured at the test hydrant. Second, the flow hydrant opened to allow water to flow ...
In hydrology, discharge is the volumetric flow rate (volume per time, in units of m 3 /h or ft 3 /h) of a stream.It equals the product of average flow velocity (with dimension of length per time, in m/h or ft/h) and the cross-sectional area (in m 2 or ft 2). [1]
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass m through a surface per unit time t. The overdot on the m is Newton's notation for a time derivative . Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
This can be seen in Figure 6 by the decrease in depth from y 1,q=30 to y 1,q=10 and the increase in depth between y 2,q=30 and y 2,q=10. From this analysis of the change in depth due to a change in flow rate, we can also imagine that the energy lost in a jump with a value of q = 10 ft 2 /s would be different from that of a jump with q = 30 ft 2 ...