enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free neutron decay - Wikipedia

    en.wikipedia.org/wiki/Free_neutron_decay

    The beta decay of the neutron described in this article can be notated at four slightly different levels of detail, as shown in four layers of Feynman diagrams in a section below. n 0 → p + + e − + ν e. The hard-to-observe W − quickly decays into an electron and its matching antineutrino. The subatomic reaction shown immediately above ...

  3. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.

  4. Proton decay - Wikipedia

    en.wikipedia.org/wiki/Proton_decay

    Free neutrons—those not inside an atomic nucleus—are already known to decay into protons (and an electron and an antineutrino) in a process called beta decay. Free neutrons have a half-life of 10 minutes (610.2 ± 0.8 s) [17] due to the weak interaction. Neutrons bound inside a nucleus have an immensely longer half-life – apparently as ...

  5. Spent nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Spent_nuclear_fuel

    Th-232 is a fertile material that can undergo a neutron capture reaction and two beta minus decays, resulting in the production of fissile U-233. Its radioactive decay will strongly influence the long-term activity curve of the SNF around a million years. A comparison of the activity associated to U-233 for three different SNF types can be seen ...

  6. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    According to quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. [2] [3] [4] However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as a half-life.

  7. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Fusion reactors that generate neutrons are likely to create radioactive waste, but the waste is composed of neutron-activated lighter isotopes, which have relatively short (50–100 years) decay periods as compared to typical half-lives of 10,000 years [122] for fission waste, which is long due primarily to the long half-life of alpha-emitting ...

  8. List of elements by stability of isotopes - Wikipedia

    en.wikipedia.org/wiki/List_of_elements_by...

    An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.

  9. Island of stability - Wikipedia

    en.wikipedia.org/wiki/Island_of_stability

    As of 2019, 251 nuclides are observed to be stable (having never been observed to decay); [9] generally, as the number of protons increases, stable nuclei have a higher neutron–proton ratio (more neutrons per proton). The last element in the periodic table that has a stable isotope is lead (Z = 82), [a] [b] with stability (i.e., half-lives of ...