enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts and . For example, the complete bipartite graph K 3,5 has degree sequence (,,), (,,,,). Isomorphic bipartite graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a bipartite graph; in ...

  3. Graham–Pollak theorem - Wikipedia

    en.wikipedia.org/wiki/Graham–Pollak_theorem

    In graph theory, the Graham–Pollak theorem states that the edges of an -vertex complete graph cannot be partitioned into fewer than complete bipartite graphs. [1] It was first published by Ronald Graham and Henry O. Pollak in two papers in 1971 and 1972 (crediting Hans Witsenhausen for a key lemma), in connection with an application to ...

  4. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]

  5. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...

  6. Triangle-free graph - Wikipedia

    en.wikipedia.org/wiki/Triangle-free_graph

    Many triangle-free graphs are not bipartite, for example any cycle graph C n for odd n > 3. By Turán's theorem, the n-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph in which the numbers of vertices on each side of the bipartition are as equal as possible.

  7. Gale–Ryser theorem - Wikipedia

    en.wikipedia.org/wiki/Gale–Ryser_theorem

    The Gale–Ryser theorem is a result in graph theory and combinatorial matrix theory, two branches of combinatorics.It provides one of two known approaches to solving the bipartite realization problem, i.e. it gives a necessary and sufficient condition for two finite sequences of natural numbers to be the degree sequence of a labeled simple bipartite graph; a sequence obeying these conditions ...

  8. Star (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Star_(graph_theory)

    In graph theory, a star S k is the complete bipartite graph K 1,k : a tree with one internal node and k leaves (but no internal nodes and k + 1 leaves when k ≤ 1). Alternatively, some authors define S k to be the tree of order k with maximum diameter 2; in which case a star of k > 2 has k − 1 leaves. A star with 3 edges is called a claw.

  9. Bipartite realization problem - Wikipedia

    en.wikipedia.org/wiki/Bipartite_realization_problem

    A further generalization is the f-factor problem for bipartite graphs, i.e. for a given bipartite graph one searches for a subgraph possessing a certain degree sequence. The problem uniform sampling a bipartite graph to a fixed degree sequence is to construct a solution for the bipartite realization problem with the additional constraint that ...