enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Makridakis Competitions - Wikipedia

    en.wikipedia.org/wiki/Makridakis_Competitions

    The time series included yearly, quarterly, monthly, daily, and other time series. In order to ensure that enough data was available to develop an accurate forecasting model, minimum thresholds were set for the number of observations: 14 for yearly series, 16 for quarterly series, 48 for monthly series, and 60 for other series. [1]

  3. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  4. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the uncertainty that is present. The result of this integration is the posterior distribution, also known as the updated probability estimate, as additional evidence on the prior distribution is acquired.

  5. Bayesian structural time series - Wikipedia

    en.wikipedia.org/.../Bayesian_structural_time_series

    Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...

  6. Delphi method - Wikipedia

    en.wikipedia.org/wiki/Delphi_method

    Quantitative methods produced errors of 10–15%, and traditional unstructured forecast methods had errors of about 20%. (This is only one example; the overall accuracy of the technique is mixed.) The Delphi method has also been used as a tool to implement multi-stakeholder approaches for participative policy-making in developing countries.

  7. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

  8. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    Markov-chains have been used as a forecasting methods for several topics, for example price trends, [8] wind power [9] and solar irradiance. [10] The Markov-chain forecasting models utilize a variety of different settings, from discretizing the time-series [ 9 ] to hidden Markov-models combined with wavelets [ 8 ] and the Markov-chain mixture ...

  9. Forecasting - Wikipedia

    en.wikipedia.org/wiki/Forecasting

    This forecasting method is only suitable for time series data. [17] Using the naïve approach, forecasts are produced that are equal to the last observed value. This method works quite well for economic and financial time series, which often have patterns that are difficult to reliably and accurately predict. [17]