enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Broken diagonal - Wikipedia

    en.wikipedia.org/wiki/Broken_diagonal

    The fact that this square is a pandiagonal magic square can be verified by checking that all of its broken diagonals add up to the same constant: 3+12+14+5 = 34 10+1+7+16 = 34 10+13+7+4 = 34. One way to visualize a broken diagonal is to imagine a "ghost image" of the panmagic square adjacent to the original:

  3. Geometric magic square - Wikipedia

    en.wikipedia.org/wiki/Geometric_magic_square

    The richer structure of geomagic squares is reflected in the existence of specimens showing a far greater degree of 'magic' than is possible with numerical types. Thus a panmagic square is one in which every diagonal, including the so-called broken diagonals, shares the same magic property as the rows and columns. However, it is easily shown ...

  4. Magic cube classes - Wikipedia

    en.wikipedia.org/wiki/Magic_cube_classes

    For the diagonal or pandiagonal classes, one or possibly 2 of the 6 oblique magic squares may be pandiagonal magic. All but 6 of the oblique squares are 'broken'. This is analogous to the broken diagonals in a pandiagonal magic square. i.e. Broken diagonals are 1-D in a 2-D square; broken oblique squares are 2-D in a 3-D cube.

  5. Pandiagonal magic square - Wikipedia

    en.wikipedia.org/wiki/Pandiagonal_magic_square

    A pandiagonal magic square or panmagic square (also diabolic square, diabolical square or diabolical magic square) is a magic square with the additional property that the broken diagonals, i.e. the diagonals that wrap round at the edges of the square, also add up to the magic constant.

  6. Magic square - Wikipedia

    en.wikipedia.org/wiki/Magic_square

    A pan-diagonal magic square remains a pan-diagonal magic square under cyclic shifting of rows or of columns or both. [69] This allows us to position a given number in any one of the n 2 cells of an n order square. Thus, for a given pan-magic square, there are n 2 equivalent pan-magic squares. In the example below, the original square on the ...

  7. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    Every kite is an orthodiagonal quadrilateral, meaning that its two diagonals are at right angles to each other. Moreover, one of the two diagonals (the symmetry axis) is the perpendicular bisector of the other, and is also the angle bisector of the two angles it meets. [1] Because of its symmetry, the other two angles of the kite must be equal.

  8. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).

  9. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    A square diagonal matrix is a symmetric matrix, so this can also be called a symmetric diagonal matrix. The following matrix is square diagonal matrix: [] If the entries are real numbers or complex numbers, then it is a normal matrix as well. In the remainder of this article we will consider only square diagonal matrices, and refer to them ...