enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:

  3. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    Replace with for the next step. The coefficients found by Fehlberg for Formula 2 (derivation with his parameter α 2 = 3/8) are given in the table below, using array indexing of base 1 instead of base 0 to be compatible with most computer languages:

  4. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    The consequence of this difference is that at every step, a system of algebraic equations has to be solved. This increases the computational cost considerably. If a method with s stages is used to solve a differential equation with m components, then the system of algebraic equations has ms components.

  5. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Single-step methods (such as Euler's method) refer to only one previous point and its derivative to determine the current value. Methods such as Runge–Kutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt ...

  6. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    Traditionally the Newton–Euler equations is the grouping together of Euler's two laws of motion for a rigid body into a single equation with 6 components, using column vectors and matrices. These laws relate the motion of the center of gravity of a rigid body with the sum of forces and torques (or synonymously moments) acting on the rigid body.

  7. Kutta condition - Wikipedia

    en.wikipedia.org/wiki/Kutta_condition

    The equations of conservation of mass and conservation of momentum applied to an inviscid fluid flow, such as a potential flow, around a solid body result in an infinite number of valid solutions. One way to choose the correct solution would be to apply the viscous equations, in the form of the Navier–Stokes equations. However, these normally ...

  8. One-step method - Wikipedia

    en.wikipedia.org/wiki/One-step_method

    is used. This well-known method was published by the German mathematician Wilhelm Kutta in 1901, after Karl Heun had found a three-step one-step method of order 3 a year earlier. [19] The construction of explicit methods of even higher order with the smallest possible number of steps is a mathematically quite demanding problem.

  9. Runge–Kutta method (SDE) - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_method_(SDE)

    In mathematics of stochastic systems, the Runge–Kutta method is a technique for the approximate numerical solution of a stochastic differential equation. It is a generalisation of the Runge–Kutta method for ordinary differential equations to stochastic differential equations (SDEs). Importantly, the method does not involve knowing ...