Search results
Results from the WOW.Com Content Network
Cell potency is a cell's ability to differentiate into other cell types. [1] [2] The more cell types a cell can differentiate into, the greater its potency.Potency is also described as the gene activation potential within a cell, which like a continuum, begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency, and finally ...
Neural stem cells are committed to the neuronal lineages (neurons, astrocytes, and oligodendrocytes), and thus their potency is restricted. [22] Nearly all research to date has made use of mouse embryonic stem cells (mES) or human embryonic stem cells (hES) derived from the early inner cell mass. Both have the essential stem cell ...
Cell potency, a measure of the differentiation potential of stem cells; In homeopathic dilutions, potency is a measure of how dilute a substance is; Potency in philosophy is a specific potentiality in Aristotle's Theory of Potentiality and actuality, or "Act and Potency"; e.g., since the material, stone, is potentially a statue, it has a ...
One type of pluripotent cell, called a hematopoietic stem cell, can differentiate into a large variety of cells with different functions. This stem cell can produce red blood cells, platelets, mast cells, dendritic cells, macrophages, lymphocytes, neutrophils, basophils, and eosinophils. Each of these cells have a different function, but they ...
Embryonic stem cells of the inner cell mass are pluripotent, meaning they are able to differentiate to generate primitive ectoderm, which ultimately differentiates during gastrulation into all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm.
Induced pluripotent stem cells are similar to natural pluripotent stem cells, such as embryonic stem cells, in many aspects, such as the expression of certain stem cell genes and proteins, chromatin methylation patterns, doubling time, embryoid body formation, teratoma formation, viable chimera formation, and potency and differentiability, but ...
Neural stem cells differentiating to astrocytes (green) and sites of growth hormone receptor shown in red. There are two basic types of stem cell: adult stem cells, which are limited in their ability to differentiate, and embryonic stem cells (ESCs), which are pluripotent and have the capability of differentiating into any cell type.
Endothelial stem cells (ESCs) are one of three types of stem cells found in bone marrow. They are multipotent, which describes the ability to give rise to many cell types, whereas a pluripotent stem cell can give rise to all types. ESCs have the characteristic properties of a stem cell: self-renewal and differentiation.