enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:4-Bit Ripple Adder.svg - Wikipedia

    en.wikipedia.org/wiki/File:4-Bit_Ripple_Adder.svg

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  3. File:4-bit ripple carry adder-subtracter.svg - Wikipedia

    en.wikipedia.org/wiki/File:4-bit_ripple_carry...

    Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

  4. Counter (digital) - Wikipedia

    en.wikipedia.org/wiki/Counter_(digital)

    An asynchronous (ripple) counter is a "chain" of toggle (T) flip-flops in which the least-significant flip-flop (bit 0) is clocked by an external signal (the counter input clock), and all other flip-flops are clocked by the output of the nearest, less significant flip-flop (e.g., bit 0 clocks the bit 1 flip-flop, bit 1 clocks the bit 2 flip ...

  5. File:4 bit counter.svg - Wikipedia

    en.wikipedia.org/wiki/File:4_bit_counter.svg

    The following other wikis use this file: Usage on af.wikipedia.org Skematiese voorstelling; Usage on ar.wikipedia.org مخطط رسمي; Usage on ca.wikipedia.org

  6. Carry-skip adder - Wikipedia

    en.wikipedia.org/wiki/Carry-skip_adder

    Breaking this down into more specific terms, in order to build a 4-bit carry-bypass adder, 6 full adders would be needed. The input buses would be a 4-bit A and a 4-bit B, with a carry-in (CIN) signal. The output would be a 4-bit bus X and a carry-out signal (COUT). The first two full adders would add the first two bits together.

  7. Kogge–Stone adder - Wikipedia

    en.wikipedia.org/wiki/Kogge–Stone_adder

    An example of a 4-bit Kogge–Stone adder is shown in the diagram. Each vertical stage produces a "propagate" and a "generate" bit, as shown. The culminating generate bits (the carries) are produced in the last stage (vertically), and these bits are XOR'd with the initial propagate after the input (the red boxes) to produce the sum bits. E.g., the first (least-significant) sum bit is ...

  8. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  9. Barrel shifter - Wikipedia

    en.wikipedia.org/wiki/Barrel_shifter

    The very fastest shifters are implemented as full crossbars, in a manner similar to the 4-bit shifter depicted above, only larger. These incur the least delay, with the output always a single gate delay behind the input to be shifted (after allowing the small time needed for the shift count decoder to settle; this penalty, however, is only incurred when the shift count changes).