Search results
Results from the WOW.Com Content Network
As caesium 133, 135, and 137 are formed by the beta particle decay of the corresponding xenon isotopes, this causes the caesium to become physically separated from the bulk of the uranium oxide fuel. Because 135 Xe is a potent nuclear poison with the largest cross section for thermal neutron absorption, the buildup of 135 Xe in the fuel inside ...
Xenon-136 is an isotope of xenon that undergoes double beta decay to barium-136 with a very long half-life of 2.11 × 10 21 years, more than 10 orders of magnitude longer than the age of the universe ((13.799 ± 0.021) × 10 9 years). It is being used in the Enriched Xenon Observatory experiment to search for neutrinoless double beta decay.
The ratio of xenon-136 to xenon-135 (or its decay products) can give hints as to the power history of a given reactor and the absence of xenon-136 is a "fingerprint" for nuclear explosions, as xenon-135 is not produced directly but as a product of successive beta decays and thus it cannot absorb any neutrons in a nuclear explosion which occurs ...
Caesium-137 has been used in hydrologic studies analogous to those with tritium. As a daughter product of fission bomb testing from the 1950s through the mid-1980s, caesium-137 was released into the atmosphere, where it was absorbed readily into solution. Known year-to-year variation within that period allows correlation with soil and sediment ...
To prevent decomposition, the xenon tetroxide thus formed is quickly cooled into a pale-yellow solid. It explodes above −35.9 °C into xenon and oxygen gas, but is otherwise stable. A number of xenon oxyfluorides are known, including XeOF 2, XeOF 4, XeO 2 F 2, and XeO 3 F 2. XeOF 2 is formed by reacting OF 2 with xenon gas at low temperatures.
Compared with solar xenon, Earth's atmospheric Xe is enriched in heavy isotopes by 3 to 4% per atomic mass unit (amu). [18] However, the total abundance of xenon gas is depleted by one order of magnitude relative to other noble gases. [15] The elemental depletion while relative enrichment in heavy isotopes is called the "Xenon paradox".
118 chemical elements have been identified and named officially by IUPAC.A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z).
This is an accepted version of this page This is the latest accepted revision, reviewed on 15 February 2025. Periodic table of the elements with eight or more periods Extended periodic table Hydrogen Helium Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon Potassium Calcium Scandium Titanium Vanadium Chromium ...