Search results
Results from the WOW.Com Content Network
While the Lineweaver–Burk plot has historically been used for evaluation of the parameters, together with the alternative linear forms of the Michaelis–Menten equation such as the Hanes–Woolf plot or Eadie–Hofstee plot, all linearized forms of the Michaelis–Menten equation should be avoided to calculate the kinetic parameters ...
In enzyme kinetics, a secondary plot uses the intercept or slope from several Lineweaver–Burk plots to find additional kinetic constants. [1] [2]For example, when a set of v by [S] curves from an enzyme with a ping–pong mechanism (varying substrate A, fixed substrate B) are plotted in a Lineweaver–Burk plot, a set of parallel lines will be produced.
Curve of the Michaelis–Menten equation labelled in accordance with IUBMB recommendations. In biochemistry, Michaelis–Menten kinetics, named after Leonor Michaelis and Maud Menten, is the simplest case of enzyme kinetics, applied to enzyme-catalysed reactions of one substrate and one product.
This is produced by taking the reciprocal of both sides of the Michaelis–Menten equation. As shown on the right, this is a linear form of the Michaelis–Menten equation and produces a straight line with the equation y = mx + c with a y-intercept equivalent to 1/V max and an x-intercept of the graph representing −1/K M.
Hans Lineweaver (December 25, 1907 – June 10, 2009) was an American physical chemist, who is credited with introducing the double-reciprocal plot or Lineweaver–Burk plot. [2] The paper containing the equation was co-authored by Dean Burk , and was entitled "The Determination of Enzyme Dissociation Constants (1934)".
The plot is occasionally attributed to Augustinsson [5] and referred to the Woolf–Augustinsson–Hofstee plot [6] [7] [8] or simply the Augustinsson plot. [9] However, although Haldane, Woolf or Eadie were not explicitly cited when Augustinsson introduced the versus / equation, both the work of Haldane [10] and of Eadie [3] are cited at other places of his work and are listed in his ...
When a non-competitive inhibitor is added the Vmax is changed, while the Km remains unchanged. According to the Lineweaver-Burk plot the Vmax is reduced during the addition of a non-competitive inhibitor, which is shown in the plot by a change in both the slope and y-intercept when a non-competitive inhibitor is added. [8]
It can be recognized by two observations: first, it cannot be reversed by increasing the substrate concentration , and second, linear plots show effects on and , seen, for example, in the Lineweaver–Burk plot as parallel rather than intersecting lines. It is sometimes explained by supposing that the inhibitor can bind to the enzyme-substrate ...