enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    SAT itself (tacitly) uses only ∃ quantifiers. If only ∀ quantifiers are allowed instead, the so-called tautology problem is obtained, which is co-NP-complete. If any number of both quantifiers are allowed, the problem is called the quantified Boolean formula problem (QBF), which can be shown to be PSPACE-complete. It is widely believed that ...

  3. SAT solver - Wikipedia

    en.wikipedia.org/wiki/SAT_solver

    In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...

  4. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  5. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  6. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    A problem is said to be NP-hard if everything in NP can be transformed in polynomial time into it even though it may not be in NP. A problem is NP-complete if it is both in NP and NP-hard. The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do.

  7. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.

  8. Algorithm - Wikipedia

    en.wikipedia.org/wiki/Algorithm

    Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]

  9. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    If sub-problems can be nested recursively inside larger problems, so that dynamic programming methods are applicable, then there is a relation between the value of the larger problem and the values of the sub-problems. [1] In the optimization literature this relationship is called the Bellman equation.