Search results
Results from the WOW.Com Content Network
This definition makes sense if x is an integrable function (in L 1), a rapidly decreasing distribution (in particular, a compactly supported distribution) or is a finite Borel measure. If x is the distribution function of a random variable on the real line, then the n th convolution power of x gives the distribution function of the sum of n ...
In engineering, a transfer function (also known as system function [1] or network function) of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. [2] [3] [4] It is widely used in electronic engineering tools like circuit simulators and control systems.
On the other hand, when also the pattern translation is important, the complex argument of the optical transfer function can be depicted as a second real-valued function, commonly referred to as the phase transfer function (PhTF). The complex-valued optical transfer function can be seen as a combination of these two real-valued functions:
The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.
The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.
The auxiliary function () is known as the cavity distribution function. [5]: Table 4.1 It has been shown that for classical fluids at a fixed density and a fixed positive temperature, the effective pair potential that generates a given g ( r ) {\displaystyle g(r)} under equilibrium is unique up to an additive constant, if it exists.
The terminology advanced and retarded is especially useful when the variable x corresponds to time. In such cases, the solution provided by the use of the retarded Green's function depends only on the past sources and is causal whereas the solution provided by the use of the advanced Green's function depends only on the future sources and is ...
Since there is no function having this property, modelling the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions. The delta function was introduced by physicist Paul Dirac , and has since been applied routinely in physics and engineering to model point masses ...