Search results
Results from the WOW.Com Content Network
In compressible fluid dynamics, impact pressure (dynamic pressure) is the difference between total pressure (also known as pitot pressure or stagnation pressure) and static pressure. [ 1 ] [ 2 ] In aerodynamics notation, this quantity is denoted as q c {\displaystyle q_{c}} or Q c {\displaystyle Q_{c}} .
Gurney developed a simple and convenient formula based on the conservation laws of momentum and energy that model how energy was distributed between the metal shell and the detonation gases that is remarkably accurate in many cases.
Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...
The simplest form of a group-contribution method is the determination of a component property by summing up the group contributions : [] = +.This simple form assumes that the property (normal boiling point in the example) is strictly linearly dependent on the number of groups, and additionally no interaction between groups and molecules are assumed.
The activity of a real chemical is a function of the thermodynamic state of the system, i.e. temperature and pressure. Equipped with the activity coefficients and a knowledge of the constituents and their relative amounts, phenomena such as phase separation and vapour-liquid equilibria can be calculated. UNIFAC attempts to be a general model ...
In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.
It is proportional to the number of elements in the chart and is given by 1/N, N being the total number of elements in the chart. For example, a typical chart consists of 200 elements; therefore, the influence value is 0.005. [1] The procedure for obtaining the vertical pressure at any point below a loaded area is as follows:
The technique is closely related to using gas adsorption to measure pore sizes, but uses the Gibbs–Thomson equation rather than the Kelvin equation.They are both particular cases of the Gibbs Equations of Josiah Willard Gibbs: the Kelvin equation is the constant temperature case, and the Gibbs–Thomson equation is the constant pressure case. [1]