enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem , there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes .

  3. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Since no prime number divides 1, p cannot be in the list. This means that at least one more prime number exists that is not in the list. This proves that for every finite list of prime numbers there is a prime number not in the list. [4] In the original work, Euclid denoted the arbitrary finite set of prime numbers as A, B, Γ. [5]

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all composite: decimal numbers that end in 0, 2, 4, 6, or 8 are even, and decimal numbers that end in 0 or 5 are divisible by 5. [11]

  5. Euclid number - Wikipedia

    en.wikipedia.org/wiki/Euclid_number

    Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4. This property implies that no Euclid number can be a square.

  6. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.

  7. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    In 1737, Euler related the study of prime numbers to what is known now as the Riemann zeta function: he showed that the value () reduces to a ratio of two infinite products, Π p / Π (p–1), for all primes p, and that the ratio is infinite. [1] [2] In 1775, Euler stated the theorem for the cases of a + nd, where a = 1. [3]

  8. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    The smallest integer m > 1 such that p n # + m is a prime number, where the primorial p n # is the product of the first n prime numbers. A005235 Semiperfect numbers

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω( n ) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS ).