Search results
Results from the WOW.Com Content Network
Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA structure that was first discovered in 1964 by Alix Bassel and Yasuo Hotta. [1] In contrast to previously identified circular DNA structures (e.g., bacterial plasmids, mitochondrial DNA, circular bacterial chromosomes, or chloroplast DNA), eccDNA are circular DNA found in the eukaryotic nuclei of plant and animal ...
Circular extrachromosomal DNA are not only found in yeast but other eukaryotic organisms. [15] [16] A regulated formation of eccDNA in preblastua Xenopus embryos has been developed. The population of circular rDNA is decreased in embryos, indicative of the circular rDNA migrating to linear DNA, as was shown in their analysis on 2D gel ...
Extrachromosomal DNA exists in prokaryotes outside the nucleoid region as circular or linear plasmids. Bacterial plasmids are typically short sequences, consisting of 1 to a few hundred kilobase (kb) segments, and contain an origin of replication which allows the plasmid to replicate independently of the bacterial chromosome. [ 10 ]
Circular DNA is DNA that forms a closed loop and has no ends. Examples include: Plasmids, mobile genetic elements; cccDNA, formed by some viruses inside cell nuclei; Circular bacterial chromosomes; Mitochondrial DNA (mtDNA) Chloroplast DNA (cpDNA), and that of other plastids; Extrachromosomal circular DNA (eccDNA)
A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms.
A circular chromosome is a chromosome in bacteria, archaea, mitochondria, and chloroplasts, in the form of a molecule of circular DNA, unlike the linear chromosome of most eukaryotes. Most prokaryote chromosomes contain a circular DNA molecule. This has the major advantage of having no free ends to the DNA.
Combined with the five-kingdom model, this created a six-kingdom model, where the kingdom Monera is replaced by the kingdoms Bacteria and Archaea. [16] This six-kingdom model is commonly used in recent US high school biology textbooks, but has received criticism for compromising the current scientific consensus. [ 13 ]
Prokaryotes can carry extrachromosomal DNA elements called plasmids, which are usually circular. Linear bacterial plasmids have been identified in several species of spirochete bacteria, including members of the genus Borrelia notably Borrelia burgdorferi , which causes Lyme disease. [ 3 ]