Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; ... Free radical; Radical (chemistry) * ... Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; ...
Lewis dot structure of a Hydroxide ion compared to a hydroxyl radical. In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. [1] [2] With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most ...
A free-radical reaction is any chemical reaction involving free radicals. This reaction type is abundant in organic reactions. Two pioneering studies into free radical reactions have been the discovery of the triphenylmethyl radical by Moses Gomberg (1900) and the lead-mirror experiment [1] described by Friedrich Paneth in 1927.
Beta scission is an important reaction in the chemistry of thermal cracking of hydrocarbons and the formation of free radicals. Free radicals are formed upon splitting the carbon-carbon bond. Free radicals are extremely reactive and short-lived. When a free radical in a polymer chain undergoes a beta scission, the free radical breaks two ...
Radical disproportionation encompasses a group of reactions in organic chemistry in which two radicals react to form two different non-radical products. Radicals in chemistry are defined as reactive atoms or molecules that contain an unpaired electron or electrons in an open shell. The unpaired electrons can cause radicals to be unstable and ...
Radicals can undergo a disproportionation reaction through a radical elimination mechanism (See Fig. 1). Here a radical abstracts a hydrogen atom from another same radical to form two non-radical species: an alkane and an alkene. Radicals can also undergo an elimination reaction to generate a new radical as the leaving group.
Chain propagation: A radical reacts with a non-radical to produce a new radical species; Chain termination: Two radicals react with each other to create a non-radical species; In a free-radical addition, there are two chain propagation steps. In one, the adding radical attaches to a multiply-bonded precursor to give a radical with lesser bond ...
The formation of thiyl radicals in vivo primarily occurs through the action of various radicals on the amino acid cysteine incorporated into proteins. The rate of radical formation is highest with the OH · radical (k = 6.8 x 10 9 M-1 s-1) [3] and decreases through the H · radical (k = 6.8 x 10 9 M-1 s-1) [3] down to peroxyl radicals R-CHOO · (k = 4.2 x 10 3 M-1 s-1).