Search results
Results from the WOW.Com Content Network
A simple but very useful consequence of L'Hopital's rule is that the derivative of a function cannot have a removable discontinuity. That is, suppose that f is continuous at a , and that f ′ ( x ) {\displaystyle f'(x)} exists for all x in some open interval containing a , except perhaps for x = a {\displaystyle x=a} .
Guillaume François Antoine, Marquis de l'Hôpital [1] (French: [ɡijom fʁɑ̃swa ɑ̃twan maʁki də lopital]; sometimes spelled L'Hospital; 7 June 1661 – 2 February 1704) [a] was a French mathematician. His name is firmly associated with l'Hôpital's rule for calculating limits involving indeterminate forms 0/0 and ∞/∞.
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
[1] [2] This applies even in the cases that f(x) and g(x) take on different values at c, or are discontinuous at c. Polynomials and functions of the form x a [ edit ]
On February 8, 2012, WolframAlpha Pro was released, [13] offering users additional features for a monthly subscription fee. [13] [14] Usage.
Months after its $80 million Series B fundraise, Course Hero has acquired Symbolab, an artificial intelligence-powered calculator that helps students answer and understand complex math questions.
[8] [9] Some authors define the Jacobian as the transpose of the form given above. The Jacobian matrix represents the differential of f at every point where f is differentiable. In detail, if h is a displacement vector represented by a column matrix , the matrix product J ( x ) ⋅ h is another displacement vector, that is the best linear ...
Problems 1, 2, 5, 6, [g] 9, 11, 12, 15, 21, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [h] unresolved, and 4 and 23 as too vague to ever be described as solved. The withdrawn 24 would also be in this class.