enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Steinhart–Hart equation - Wikipedia

    en.wikipedia.org/wiki/Steinhart–Hart_equation

    The equation model converts the resistance actually measured in a thermistor to its theoretical bulk temperature, with a closer approximation to actual temperature than simpler models, and valid over the entire working temperature range of the sensor.

  3. Thermistor - Wikipedia

    en.wikipedia.org/wiki/Thermistor

    A thermistor is a semiconductor type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word thermistor is a portmanteau of thermal and resistor. Thermistors are categorized based on their conduction models.

  4. UNIFAC - Wikipedia

    en.wikipedia.org/wiki/UNIFAC

    A particular problem in the area of liquid-state thermodynamics is the sourcing of reliable thermodynamic constants. These constants are necessary for the successful prediction of the free energy state of the system; without this information it is impossible to model the equilibrium phases of the system.

  5. Callendar–Van Dusen equation - Wikipedia

    en.wikipedia.org/wiki/Callendar–Van_Dusen_equation

    The Callendar–Van Dusen equation is an equation that describes the relationship between resistance (R) and temperature (T) of platinum resistance thermometers (RTD).. As commonly used for commercial applications of RTD thermometers, the relationship between resistance and temperature is given by the following equations.

  6. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    Working fluids are often categorized on the basis of the shape of their T–s diagram. An isentropic process is depicted as a vertical line on a T–s diagram, whereas an isothermal process is a horizontal line. [2] Example T–s diagram for a thermodynamic cycle taking place between a hot reservoir (T H) and a cold reservoir (T C).

  7. Temperature coefficient - Wikipedia

    en.wikipedia.org/wiki/Temperature_coefficient

    For a property R that changes when the temperature changes by dT, the temperature coefficient α is defined by the following equation: d R R = α d T {\displaystyle {\frac {dR}{R}}=\alpha \,dT} Here α has the dimension of an inverse temperature and can be expressed e.g. in 1/K or K −1 .

  8. CALPHAD - Wikipedia

    en.wikipedia.org/wiki/CALPHAD

    [4] [5] [6] The CALPHAD approach is based on the fact that a phase diagram is a manifestation of the equilibrium thermodynamic properties of the system, which are the sum of the properties of the individual phases. [7] It is thus possible to calculate a phase diagram by first assessing the thermodynamic properties of all the phases in a system.

  9. Deal–Grove model - Wikipedia

    en.wikipedia.org/wiki/Deal–Grove_model

    Given these assumptions, the flux of oxidant through each of the three phases can be expressed in terms of concentrations, material properties, and temperature. = = = where: is the gas-phase transport coefficient, is the concentration of oxidant in the surrounding atmosphere, is the concentration of oxidant in the surface of the oxide, is the concentration of the oxidant at the interface ...