Search results
Results from the WOW.Com Content Network
Trilateration is the use of distances (or "ranges") for determining the unknown position coordinates of a point of interest, often around Earth (geopositioning). [1] When more than three distances are involved, it may be called multilateration , for emphasis.
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
The Gauss–Newton method may also be used with the minimum number of measured ranges. Since it is iterative, the Gauss–Newton method requires an initial solution estimate. In 3-D Cartesian space, a fourth sphere eliminates the ambiguous solution that occurs with three ranges, provided its center is not co-planar with the first three.
Pseudo-range multilateration, often simply multilateration (MLAT) when in context, is a technique for determining the position of an unknown point, such as a vehicle, based on measurement of biased times of flight (TOFs) of energy waves traveling between the vehicle and multiple stations at known locations.
An xy-Cartesian coordinate system rotated through an angle to an x′y′-Cartesian coordinate system In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and ...
If a left-handed Cartesian coordinate system is used, with x directed to the right but y directed down, R(θ) is clockwise. Such non-standard orientations are rarely used in mathematics but are common in 2D computer graphics , which often have the origin in the top left corner and the y -axis down the screen or page.
Prolate spheroidal coordinates μ and ν for a = 1.The lines of equal values of μ and ν are shown on the xz-plane, i.e. for φ = 0.The surfaces of constant μ and ν are obtained by rotation about the z-axis, so that the diagram is valid for any plane containing the z-axis: i.e. for any φ.
The black point is located at the intersection of the red, blue and yellow isosurfaces, at Cartesian coordinates roughly (0.996, −1.725, 1.911). Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci.