Search results
Results from the WOW.Com Content Network
For reference, about 10,000 100-watt lightbulbs or 5,000 computer systems would be needed to draw 1 MW. Also, 1 MW is approximately 1360 horsepower. Modern high-power diesel-electric locomotives typically have a peak power of 3–5 MW, while a typical modern nuclear power plant produces on the order of 500–2000 MW peak output.
dBm or dB mW (decibel-milliwatts) is a unit of power level expressed using a logarithmic decibel (dB) scale respective to one milliwatt (mW). It is commonly used by radio, microwave and fiber-optical communication technicians & engineers to measure the power of system transmissions on a log scale , which can express both very large and very ...
One terawatt hour of energy is equal to a sustained power delivery of one terawatt for one hour, or approximately 114 megawatts for a period of one year: Power output = energy / time 1 terawatt hour per year = 1 × 10 12 W·h / (365 days × 24 hours per day) ≈ 114 million watts, equivalent to approximately 114 megawatts of constant power output.
A scale factor of 1 ⁄ 10 cannot be used here, because scaling 160 by 1 ⁄ 10 gives 16, which is greater than the greatest value that can be stored in this fixed-point format. However, 1 ⁄ 11 will work as a scale factor, because the maximum scaled value, 160 ⁄ 11 = 14. 54, fits within this range. Given this set:
dBm0 is an abbreviation for the power in decibel-milliwatts (dBm) measured at a zero transmission level point (ZLP). dBm0 is a concept used (amongst other areas) in audio/telephony processing since it allows a smooth integration of analog and digital chains. Notably, for A-law and μ-law codecs the standards define a sequence which has a 0 dBm0 ...
Whether accomplished through reduced consumption, increased efficiency, or some other creative way, saved, unused, and wasted electricity is measured in negawatts. Demand response (DR) is the ...
In the USA the units of mW/cm 2, are more often used when making surveys. One mW/cm 2 is the same power density as 10 W/m 2. The following equation can be used to obtain these units directly: [6] Pd = 0.1 × E × H mW/cm 2. The simplified relationships stated above apply at distances of about two or more wavelengths from the radiating source.
The electric field strength at a specific point can be determined from the power delivered to the transmitting antenna, its geometry and radiation resistance. Consider the case of a center-fed half-wave dipole antenna in free space, where the total length L is equal to one half wavelength (λ/2).