Search results
Results from the WOW.Com Content Network
Permeation measurement with sweep gas. The permeation of films and membranes can be measured with any gas or liquid. One method uses a central module which is separated by the test film: the testing gas is fed on the one side of the cell and the permeated gas is carried to the detector by a sweep gas.
ASTM F1249 - Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor ASTM F2298- Standard Test Methods for Water Vapor Diffusion Resistance and Air Flow Resistance of Clothing Materials Using the Dynamic Moisture Permeation Cell
Symbol used to represent in situ permeability tests in geotechnical drawings. In fluid mechanics, materials science and Earth sciences, the permeability of porous media (often, a rock or soil) is a measure of the ability for fluids (gas or liquid) to flow through the media; it is commonly symbolized as k.
Film analysis is the process by which a film is analyzed in terms of mise-en-scène, cinematography, sound, and editing. One way of analyzing films is by shot-by-shot analysis, though that is typically used only for small clips or scenes. Film analysis is closely connected to film theory. Authors suggest various approaches to film analysis.
Oxygen transmission rate (OTR) is the measurement of the amount of oxygen gas that passes through a substance over a given period. It is mostly carried out on non-porous materials, where the mode of transport is diffusion, but there are a growing number of applications where the transmission rate also depends on flow through apertures of some description.
Metallised films have a reflective silvery surface similar to aluminium foil and are highly flammable. The coating also reduces the permeability of the film to light, water and oxygen. The properties of the film remain, such as higher toughness, the ability to be heat sealed, and a lower density at a lower cost than an aluminium foil.
A more efficient analysis of copolymer molecular mass and composition is possible using GPC combined with a triple-detection system comprising multi-angle light scattering, UV absorption and differential refractometry, if the copolymer is composed of two base polymers that provide different responses to UV and/or refractive index.
The n(λ) and k(λ) spectra of each film are obtained along with film thickness, over a wide range of wavelengths from deep ultraviolet to near infrared wavelengths (190–1000 nm). In the following examples, the notation for theoretical and measured reflectance in the spectral plots is expressed as "R-theor" and "R-meas", respectively.