enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    All rigid transformations are examples of affine transformations. The set of all (proper and improper) rigid transformations is a mathematical group called the Euclidean group, denoted E(n) for n-dimensional Euclidean spaces. The set of rigid motions is called the special Euclidean group, and denoted SE(n). In kinematics, rigid motions in a 3 ...

  3. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. [a] The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning ...

  4. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    One takes f(0) to be the identity transformation I of , which describes the initial position of the body. The position and orientation of the body at any later time t will be described by the transformation f(t). Since f(0) = I is in E + (3), the same must be true of f(t) for any later time. For that reason, the direct Euclidean isometries are ...

  5. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    The even isometries — identity, rotation, and translation — never do; they correspond to rigid motions, and form a normal subgroup of the full Euclidean group of isometries. Neither the full group nor the even subgroup are abelian ; for example, reversing the order of composition of two parallel mirrors reverses the direction of the ...

  6. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    For example, if the affine transformation acts on the plane and if the determinant of is 1 or −1 then the transformation is an equiareal mapping. Such transformations form a subgroup called the equi-affine group. [13] A transformation that is both equi-affine and a similarity is an isometry of the plane taken with Euclidean distance.

  7. Plane-based geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Plane-based_geometric_algebra

    To a first approximation, the physical world is euclidean, i.e. most transformations are rigid; Projective Geometric Algebra is therefore usually based on Cl 3,0,1 (R), since rigid transformations can be modelled in this algebra. However, it is possible to model other spaces by slightly varying the algebra.

  8. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Consider a rigid body, with three orthogonal unit vectors fixed to its body (representing the three axes of the object's local coordinate system). The basic problem is to specify the orientation of these three unit vectors, and hence the rigid body, with respect to the observer's coordinate system, regarded as a reference placement in space.

  9. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Kinematics is often described as applied geometry, where the movement of a mechanical system is described using the rigid transformations of Euclidean geometry. The coordinates of points in a plane are two-dimensional vectors in R 2 (two dimensional space). Rigid transformations are those that preserve the distance between any two