Search results
Results from the WOW.Com Content Network
37.5 million image-text examples with 11.5 million unique images across 108 Wikipedia languages. 11,500,000 image, caption Pretraining, image captioning 2021 [7] Srinivasan e al, Google Research Visual Genome Images and their description 108,000 images, text Image captioning 2016 [8] R. Krishna et al. Berkeley 3-D Object Dataset
As the image illustrated below, if only a small portion of the image is shown, it is very difficult to tell what the image is about. Mouth. Even try another portion of the image, it is still difficult to classify the image. Left eye. However, if we increase the contextual of the image, then it makes more sense to recognize. Increased field of ...
It is widely used in computer vision tasks such as image annotation, [2] vehicle counting, [3] activity recognition, [4] face detection, face recognition, video object co-segmentation. It is also used in tracking objects, for example tracking a ball during a football match, tracking movement of a cricket bat, or tracking a person in a video.
In image processing, the input is an image and the output is an image as well, whereas in computer vision, an image or a video is taken as an input and the output could be an enhanced image, an understanding of the content of an image or even behavior of a computer system based on such understanding.
Feature enhancement in an image (St Paul's Cathedral, London) using Phase Stretch Transform (PST). Left panel shows the original image and the right panel shows the detected features using PST. The phase stretch transform or PST is a physics-inspired computational approach to signal and image processing. One of its utilities is for feature ...
For example, if we have two three-by-three matrices, the first a kernel, and the second an image piece, convolution is the process of flipping both the rows and columns of the kernel and multiplying locally similar entries and summing.
Image analysis or imagery analysis is the extraction of meaningful information from images; mainly from digital images by means of digital image processing techniques. [1] Image analysis tasks can be as simple as reading bar coded tags or as sophisticated as identifying a person from their face .
General scheme of content-based image retrieval. Content-based image retrieval, also known as query by image content and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases (see this survey [1] for a scientific overview of the CBIR field).