enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    If more than one random variable is defined in a random experiment, it is important to distinguish between the joint probability distribution of X and Y and the probability distribution of each variable individually. The individual probability distribution of a random variable is referred to as its marginal probability distribution.

  3. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .

  4. Pairwise independence - Wikipedia

    en.wikipedia.org/wiki/Pairwise_independence

    That is, the joint distribution is equal to the product of the marginal distributions. [2] Unless it is not clear in context, in practice the modifier "mutual" is usually dropped so that independence means mutual independence. A statement such as " X, Y, Z are independent random variables" means that X, Y, Z are mutually independent.

  5. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  6. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    where (=, =) is the joint probability mass function of X and Y. The sum is taken over all possible outcomes of X . Remark that as above the expression is undefined if P ( Y = y ) = 0 {\displaystyle P(Y=y)=0} .

  7. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    This measure is also known as the joint probability distribution, the joint distribution, or the multivariate distribution of the random vector. The distributions of each of the component random variables X i {\displaystyle X_{i}} are called marginal distributions .

  8. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    when the two marginal functions and the copula density function are known, then the joint probability density function between the two random variables can be calculated, or; when the two marginal functions and the joint probability density function between the two random variables are known, then the copula density function can be calculated.

  9. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem. If the characteristic function φ X of a random variable X is integrable, then F X is absolutely continuous, and therefore X has a probability density function.