Search results
Results from the WOW.Com Content Network
The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. [1]
The Mann–Whitney test (also called the Mann–Whitney–Wilcoxon (MWW/MWU), Wilcoxon rank-sum test, or Wilcoxon–Mann–Whitney test) is a nonparametric statistical test of the null hypothesis that, for randomly selected values X and Y from two populations, the probability of X being greater than Y is equal to the probability of Y being greater than X.
Exactness: A test can be exact or be asymptotic delivering approximate results. ... Wilcoxon signed-rank test: interval: non-parametric: paired: ≥1: Location test:
A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test.
A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for comparing two independent samples would not be appropriate). That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared.
Tukey–Duckworth test: tests equality of two distributions by using ranks. Wald–Wolfowitz runs test: tests whether the elements of a sequence are mutually independent/random. Wilcoxon signed-rank test: tests whether matched pair samples are drawn from populations with different mean ranks.
In statistics, a rank test is any test involving ranks. ... Wilcoxon signed-rank test; Kruskal–Wallis one-way analysis of variance. Mann–Whitney U (special case)
Wilcoxon signed-rank test; Van der Waerden test; The distribution of values in decreasing order of rank is often of interest when values vary widely in scale; this is the rank-size distribution (or rank-frequency distribution), for example for city sizes or word frequencies. These often follow a power law. Some ranks can have non-integer values ...