Search results
Results from the WOW.Com Content Network
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
Otherwise, a function is an antiderivative of the zero function if and only if it is constant on each connected component of (those constants need not be equal). This observation implies that if a function g : U → C {\displaystyle g:U\to \mathbb {C} } has an antiderivative, then that antiderivative is unique up to addition of a function which ...
Antiderivative = + + Series definition ... (the antiderivative of an even function which is zero at the origin is an odd function and vice versa). ...
Risch called it a decision procedure, because it is a method for deciding whether a function has an elementary function as an indefinite integral, and if it does, for determining that indefinite integral. However, the algorithm does not always succeed in identifying whether or not the antiderivative of a given function in fact can be expressed ...
In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function () to indicate that the indefinite integral of () (i.e., the set of all antiderivatives of ()), on a connected domain, is only defined up to an additive constant.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
He wrote his team “discovered, among other things, that payment approval officers at Treasury were instructed always to approve payments, even to known fraudulent or terrorist groups.
The converse of the theorem is not true in general. A holomorphic function need not possess an antiderivative on its domain, unless one imposes additional assumptions. The converse does hold e.g. if the domain is simply connected; this is Cauchy's integral theorem, stating that the line integral of a holomorphic function along a closed curve is ...