enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Element (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Element_(mathematics)

    Rather, there are only three elements of B, namely the numbers 1 and 2, and the set {,}. The elements of a set can be anything. For example the elements of the set = {,,} are the color red, the number 12, and the set B.

  3. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  4. Set-builder notation - Wikipedia

    en.wikipedia.org/wiki/Set-builder_notation

    Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate. Thus there is a variable on the left of the ...

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).

  6. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    These objects are called the elements or members of the set. Objects can be anything: numbers, people, other sets, etc. For instance, 4 is a member of the set of all even integers. Clearly, the set of even numbers is infinitely large; there is no requirement that a set be finite. Passage with the original set definition of Georg Cantor

  7. Enumeration - Wikipedia

    en.wikipedia.org/wiki/Enumeration

    The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem.

  8. Permutation - Wikipedia

    en.wikipedia.org/wiki/Permutation

    A k-combination of a set S is a k-element subset of S: the elements of a combination are not ordered. Ordering the k -combinations of S in all possible ways produces the k -permutations of S . The number of k -combinations of an n -set, C ( n , k ), is therefore related to the number of k -permutations of n by:

  9. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    That is, is the set formed by all pairs of an element of A and an element of B. 2. Denotes the direct product of two mathematical structures of the same type, which is the Cartesian product of the underlying sets, equipped with a structure of the same type.