enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...

  3. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex. [13] The product of two CW complexes can be made into a CW complex.

  4. One- and two-tailed tests - Wikipedia

    en.wikipedia.org/wiki/One-_and_two-tailed_tests

    A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test ...

  5. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    For example it is common to take A to be Z/2Z, so that coefficients are modulo 2. This becomes straightforward in the absence of 2-torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers b i of X and the Betti numbers b i,F with coefficients in a field F.

  6. Simplicial homology - Wikipedia

    en.wikipedia.org/wiki/Simplicial_homology

    A key concept in defining simplicial homology is the notion of an orientation of a simplex. By definition, an orientation of a k-simplex is given by an ordering of the vertices, written as (v 0,...,v k), with the rule that two orderings define the same orientation if and only if they differ by an even permutation.

  7. Whitehead torsion - Wikipedia

    en.wikipedia.org/wiki/Whitehead_torsion

    Two pairs (X 1, A) and (X 2, A) are said to be equivalent, if there is a simple homotopy equivalence between X 1 and X 2 relative to A. The set of such equivalence classes form a group where the addition is given by taking union of X 1 and X 2 with common subspace A. This group is natural isomorphic to the Whitehead group Wh(A) of the CW-complex A.

  8. Group cohomology - Wikipedia

    en.wikipedia.org/wiki/Group_cohomology

    A general paradigm in group theory is that a group G should be studied via its group representations.A slight generalization of those representations are the G-modules: a G-module is an abelian group M together with a group action of G on M, with every element of G acting as an automorphism of M.

  9. Linking number - Wikipedia

    en.wikipedia.org/wiki/Linking_number

    The two curves of the Whitehead link have linking number zero. Any two unlinked curves have linking number zero. However, two curves with linking number zero may still be linked (e.g. the Whitehead link). Reversing the orientation of either of the curves negates the linking number, while reversing the orientation of both curves leaves it unchanged.