enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rigid transformation - Wikipedia

    en.wikipedia.org/wiki/Rigid_transformation

    (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation. In dimension two, a rigid motion is either a translation or a rotation.

  3. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.

  4. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    A reflection in a line is an opposite isometry, like R 1 or R 2 on the image. Translation T is a direct isometry: a rigid motion. [1] In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective.

  5. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    reflection with respect to a plane, and a translation in that plane, a rotation about an axis perpendicular to the plane, or a reflection with respect to a perpendicular plane; glide reflection with respect to a plane, and a translation in that plane; inversion in a point and any isometry keeping the point fixed

  6. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    A reflection through an axis. In mathematics, a reflection (also spelled reflexion) [1] is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as the set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection.

  7. Plane-based geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Plane-based_geometric_algebra

    Application of any rigid transformation (dual quaternion) or reflection to any object, including points, lines, planes and indeed other rigid transformations, is ~, where is object to be transformed. This is known as group conjugation or colloquially as the "sandwich product".

  8. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    Its elements are called rigid motions or displacements. Rigid motions include the identity, translations, rotations (the rigid motions that fix at least a point), and also screw motions. Typical examples of rigid transformations that are not rigid motions are reflections, which are rigid transformations that fix a hyperplane and are not the ...

  9. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    However, when a reflection is composed with a translation in any other direction, the composition of the two transformations is a glide reflection, which can be uniquely described as a reflection in a parallel hyperplane composed with a translation in a direction parallel to the hyperplane. A single glide is represented as frieze group p11g.