enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  3. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    For values within the Mandelbrot set, escape will never occur. The programmer or user must choose how many iterations–or how much "depth"–they wish to examine. The higher the maximal number of iterations, the more detail and subtlety emerge in the final image, but the longer time it will take to calculate the fractal image.

  4. Perlin noise - Wikipedia

    en.wikipedia.org/wiki/Perlin_noise

    Perlin noise is most commonly implemented as a two-, three- or four-dimensional function, but can be defined for any number of dimensions. An implementation typically involves three steps: defining a grid of random gradient vectors, computing the dot product between the gradient vectors and their offsets, and interpolation between these values. [7]

  5. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of F is then normal to the hypersurface. Similarly, an affine algebraic hypersurface may be defined by an equation F(x 1, ..., x n) = 0, where F is a polynomial. The gradient of F is zero at a singular point of the hypersurface (this is the definition of a singular point). At a non-singular point, it is a nonzero normal vector.

  6. Grade (slope) - Wikipedia

    en.wikipedia.org/wiki/Grade_(slope)

    The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line is either the elevation angle of that surface to the horizontal or its tangent.

  7. Structure tensor - Wikipedia

    en.wikipedia.org/wiki/Structure_tensor

    Aligned but oppositely oriented gradient vectors would cancel out in this average, whereas in the structure tensor they are properly added together. [6] This is a reason for why ( ∇ I ) ( ∇ I ) T {\displaystyle (\nabla I)(\nabla I)^{\text{T}}} is used in the averaging of the structure tensor to optimize the direction instead of ∇ I ...

  8. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...

  9. Nonlinear conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_conjugate...

    Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...