enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiple factor analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_factor_analysis

    Multiple factor analysis (MFA) is a factorial method [1] devoted to the study of tables in which a group of individuals is described by a set of variables (quantitative and / or qualitative) structured in groups. It is a multivariate method from the field of ordination used to simplify multidimensional data structures. MFA treats all involved ...

  3. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]

  4. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =

  5. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    Let be a natural number. For a base >, we define the sum of the factorials of the digits [5] [6] of , :, to be the following: ⁡ = =!. where = ⌊ ⁡ ⌋ + is the number of digits in the number in base , ! is the factorial of and

  6. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    In this article, the symbol () is used to represent the falling factorial, and the symbol () is used for the rising factorial. These conventions are used in combinatorics , [ 4 ] although Knuth 's underline and overline notations x n _ {\displaystyle x^{\underline {n}}} and x n ¯ {\displaystyle x^{\overline {n}}} are increasingly popular.

  8. Hyperfactorial - Wikipedia

    en.wikipedia.org/wiki/Hyperfactorial

    The hyperfactorials were studied beginning in the 19th century by Hermann Kinkelin [3] [4] and James Whitbread Lee Glaisher. [5] [4] As Kinkelin showed, just as the factorials can be continuously interpolated by the gamma function, the hyperfactorials can be continuously interpolated by the K-function.

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.