Search results
Results from the WOW.Com Content Network
Then the electron mobility μ is defined as =. Electron mobility is almost always specified in units of cm 2 /(V⋅s). This is different from the SI unit of mobility, m 2 /(V⋅s). They are related by 1 m 2 /(V⋅s) = 10 4 cm 2 /(V⋅s). Conductivity is proportional to the product of mobility and carrier concentration. For example, the same ...
is the mobility (m 2 /(V·s)). In other words, the electrical mobility of the particle is defined as the ratio of the drift velocity to the magnitude of the electric field: =. For example, the mobility of the sodium ion (Na +) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s). [1]
Differences in transport number arise from differences in electrical mobility. For example, in an aqueous solution of sodium chloride , less than half of the current is carried by the positively charged sodium ions (cations) and more than half is carried by the negatively charged chloride ions (anions) because the chloride ions are able to move ...
The formula for evaluating the drift velocity of charge carriers in a material of constant cross-sectional area is given by: [1] =, where u is the drift velocity of electrons, j is the current density flowing through the material, n is the charge-carrier number density, and q is the charge on the charge-carrier.
There are two recognized types of charge carriers in semiconductors.One is electrons, which carry a negative electric charge.In addition, it is convenient to treat the traveling vacancies in the valence band electron population as a second type of charge carrier, which carry a positive charge equal in magnitude to that of an electron.
A metal ion in aqueous solution or aqua ion is a cation, dissolved in water, of chemical formula [M(H 2 O) n] z+.The solvation number, n, determined by a variety of experimental methods is 4 for Li + and Be 2+ and 6 for most elements in periods 3 and 4 of the periodic table.
Electroosmotic flow is caused by the Coulomb force induced by an electric field on net mobile electric charge in a solution. Because the chemical equilibrium between a solid surface and an electrolyte solution typically leads to the interface acquiring a net fixed electrical charge, a layer of mobile ions, known as an electrical double layer or Debye layer, forms in the region near the interface.
where D is the diffusion constant, μ is the "mobility", k B is the Boltzmann constant, T is the absolute temperature, and q is the elementary charge, that is, the charge of one electron. Below, to combine in the same formula the chemical potential μ and the mobility, we use for mobility the notation m {\displaystyle {\mathfrak {m}}} .