Search results
Results from the WOW.Com Content Network
Even taking into account the flattening of the Earth at the poles (about 0.33% for the whole Earth, 0.25% for the inner core) and crust and upper mantle heterogeneities, this difference implied that P waves (of a broad range of wavelengths) travel through the inner core about 1% faster in the north–south direction than along directions ...
"This color-coded map in Robinson projection displays a progression of changing global surface temperature anomalies. Normal temperatures are the average over the 30 year baseline period 1951-1980. Higher than normal temperatures are shown in red and lower than normal temperatures are shown in blue.
Earth cutaway from core to exosphere Geothermal drill machine in Wisconsin, USA. Temperature within Earth increases with depth. Highly viscous or partially molten rock at temperatures between 650 and 1,200 °C (1,200 and 2,200 °F) are found at the margins of tectonic plates, increasing the geothermal gradient in the vicinity, but only the outer core is postulated to exist in a molten or fluid ...
Global map of the flux of heat, in mW/m 2, from Earth's interior to the surface. [1] The largest values of heat flux coincide with mid-ocean ridges, and the smallest values of heat flux occur in stable continental interiors. Earth's internal heat budget is fundamental to the thermal history of the Earth.
A world map is a map of most or all of the surface of Earth. World maps, because of their scale, must deal with the problem of projection. Maps rendered in two dimensions by necessity distort the display of the three-dimensional surface of the Earth. While this is true of any map, these distortions reach extremes in a world map.
Global surface temperature (GST) is the average temperature of Earth's surface. More precisely, it is the weighted average of the temperatures over the ocean and land. The former is also called sea surface temperature and the latter is called surface air temperature. Temperature data comes mainly from weather stations and satellites.
Earth's crust and mantle, Mohorovičić discontinuity between bottom of crust and solid uppermost mantle. Earth's mantle extends to a depth of 2,890 km (1,800 mi), making it the planet's thickest layer. [20] [This is 45% of the 6,371 km (3,959 mi) radius, and 83.7% of the volume - 0.6% of the volume is the crust].
Because local temperatures are sensitive to the geography of a region, mountain ranges and ocean currents ensure that smooth temperature gradients (such as might be found if Earth were uniform in composition and devoid of surface irregularities) are impossible, the location of the thermal equator is not identical to that of the geographic Equator.