Search results
Results from the WOW.Com Content Network
In a hydrocarbon molecule with all carbon atoms making up the backbone in a tetrahedral molecular geometry, the zigzag backbone is in the paper plane (chemical bonds depicted as solid line segments) with the substituents either sticking out of the paper toward the viewer (chemical bonds depicted as solid wedges) or away from the viewer ...
Wedges are used to show this, and there are two types: dashed and filled. A filled wedge indicates that the atom is in the front of the molecule; it is pointing above the plane of the paper towards the front. A dashed wedge indicates that the atom is behind the molecule; it is pointing below the plane of the paper.
[3] [4] This diagram style is an alternative to a sawhorse projection, which views a carbon–carbon bond from an oblique angle, or a wedge-and-dash style, such as a Natta projection. These other styles can indicate the bonding and stereochemistry , but not as much conformational detail.
In chemistry, the Fischer projection, devised by Emil Fischer in 1891, is a two-dimensional representation of a three-dimensional organic molecule by projection. Fischer projections were originally proposed for the depiction of carbohydrates and used by chemists, particularly in organic chemistry and biochemistry. The use of Fischer projections ...
To put this in perspective: the lowest excitation vibrational energy in water is the bending mode (about 1600 cm −1). Thus, at room temperature less than 0.07 percent of all the molecules of a given amount of water will vibrate faster than at absolute zero. As stated above, rotation hardly influences the molecular geometry.
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension).
Triple points mark conditions at which three different phases can coexist. For example, the water phase diagram has a triple point corresponding to the single temperature and pressure at which solid, liquid, and gaseous water can coexist in a stable equilibrium (273.16 K and a partial vapor pressure of 611.657 Pa).
Thermal image of a sink full of hot water with cold water being added, showing how the hot and the cold water flow into each other. Liquid is one of the four primary states of matter, with the others being solid, gas and plasma. A liquid is a fluid. Unlike a solid, the molecules in a liquid have a much greater freedom to move. The forces that ...