Search results
Results from the WOW.Com Content Network
The cyclic light-dependent reactions occur only when the sole photosystem being used is photosystem I. Photosystem I excites electrons which then cycle from the transport protein, ferredoxin (Fd), to the cytochrome complex, b 6 f, to another transport protein, plastocyanin (Pc), and back to photosystem I. A proton gradient is created across the ...
Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by absorption of light or photons. It is defined as the interaction of one or more photons with one target molecule that dissociates into two fragments.
In the reaction center of PSII of plants and cyanobacteria, the light energy is used to split water into oxygen, protons, and electrons. The protons will be used in proton pumping to fuel the ATP synthase at the end of an electron transport chain. A majority of the reactions occur at the D1 and D2 subunits of PSII.
This word is taken from two Greek words, photos, which means light, and synthesis, which in chemistry means making a substance by combining simpler substances. So, in the presence of light, synthesis of food is called 'photosynthesis'. Noncyclic photophosphorylation through light-dependent reactions of photosynthesis at the thylakoid membrane.
The energy of these rays is sometimes sufficient to start photonuclear reactions resulting in emitted neutrons. One such reaction, 14 7 N (γ,n) 13 7 N, is the only natural process other than those induced by cosmic rays in which 13 7 N is produced on Earth. The unstable isotopes remaining from the reaction may subsequently emit positrons by β ...
Photoexcitation is the first step in a photochemical process where the reactant is elevated to a state of higher energy, an excited state.The first law of photochemistry, known as the Grotthuss–Draper law (for chemists Theodor Grotthuss and John W. Draper), states that light must be absorbed by a chemical substance in order for a photochemical reaction to take place.
Cyanobacteria photosystem II, dimer, PDB 2AXT. Photoinhibition occurs in all organisms capable of oxygenic photosynthesis, from vascular plants to cyanobacteria. [14] [15] In both plants and cyanobacteria, blue light causes photoinhibition more efficiently than other wavelengths of visible light, and all wavelengths of ultraviolet light are more efficient than wavelengths of visible light. [14]
Photosystem II (of cyanobacteria and green plants) is composed of around 20 subunits (depending on the organism) as well as other accessory, light-harvesting proteins. Each photosystem II contains at least 99 cofactors: 35 chlorophyll a, 12 beta-carotene , two pheophytin , two plastoquinone , two heme , one bicarbonate, 20 lipids, the Mn