enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal diffusivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_diffusivity

    Thermal diffusivity is a contrasting measure to thermal effusivity. [6] [7] In a substance with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its volumetric heat capacity or 'thermal bulk'. Thermal diffusivity is often measured with the flash method.

  3. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    A direct practical application of the heat equation, in conjunction with Fourier theory, in spherical coordinates, is the prediction of thermal transfer profiles and the measurement of the thermal diffusivity in polymers (Unsworth and Duarte). This dual theoretical-experimental method is applicable to rubber, various other polymeric materials ...

  4. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  5. Lewis number - Wikipedia

    en.wikipedia.org/wiki/Lewis_number

    α is the thermal diffusivity, D is the mass diffusivity, λ is the thermal conductivity, ρ is the density, D im is the mixture-averaged diffusion coefficient, c p is the specific heat capacity at constant pressure. In the field of fluid mechanics, many sources define the Lewis number to be the inverse of the above definition. [3] [4]

  6. Fourier number - Wikipedia

    en.wikipedia.org/wiki/Fourier_number

    The Fourier number can be derived by nondimensionalizing the time-dependent diffusion equation.As an example, consider a rod of length that is being heated from an initial temperature by imposing a heat source of temperature > at time = and position = (with along the axis of the rod).

  7. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...

  8. Diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Diffusion_equation

    The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).

  9. Diffusivity - Wikipedia

    en.wikipedia.org/wiki/Diffusivity

    Diffusivity is a rate of diffusion, a measure of the rate at which particles or heat or fluids can spread. It is measured differently for different mediums. Diffusivity may refer to: Thermal diffusivity, diffusivity of heat; Diffusivity of mass: Mass diffusivity, molecular diffusivity (often called "diffusion coefficient")