Search results
Results from the WOW.Com Content Network
While not derived as a Riemann sum, taking the average of the left and right Riemann sums is the trapezoidal rule and gives a trapezoidal sum. It is one of the simplest of a very general way of approximating integrals using weighted averages. This is followed in complexity by Simpson's rule and Newton–Cotes formulas.
The Riemann hypothesis is that all nontrivial zeros of the analytical continuation of the Riemann zeta function have a real part of 1 / 2 . A proof or disproof of this would have far-reaching implications in number theory , especially for the distribution of prime numbers .
Lander, Parkin, and Selfridge conjecture: if the sum of -th powers of positive integers is equal to a different sum of -th powers of positive integers, then +. Lemoine's conjecture : all odd integers greater than 5 {\displaystyle 5} can be represented as the sum of an odd prime number and an even semiprime .
The midpoint method computes + so that the red chord is approximately parallel to the tangent line at the midpoint (the green line). In numerical analysis , a branch of applied mathematics , the midpoint method is a one-step method for numerically solving the differential equation ,
A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.
The Riemann hypothesis ("the real part of any non-trivial zero of the Riemann zeta function is 1/2") and other prime-number problems, among them Goldbach's conjecture and the twin prime conjecture: Unresolved. — 9th: Find the most general law of the reciprocity theorem in any algebraic number field. Partially resolved.
One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.
In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function. The various studies of the behaviour of the divisor function are sometimes called divisor problems.